Targeted Proton Transfer Within a Molecule: Smallest Conceivable Switch

Share:

Source: Technische Universitaet Muenchen

Post Date: 2011-12-14

Topics: Matter & Energy, Nanotechnology, Physics,

Summary: For a long time miniaturization has been the magic word in electronics. Dr. Willi Auwaerter and Professor Johannes Barth, together with their team of physicists at the Technische Universitaet Muenchen (TUM), have now presented a novel molecular switch in the journal Nature Nanotechnology. Decisive for the functionality of the switch is the position of a single proton in a porphyrin ring with an inside diameter of less than half a nanometer. The physicists can set four distinct states on demand.

 

Related Topics

» Alternative Fuels

» Aviation

» Biochemistry

» Chemistry

» Electronics

» Energy Technology

» Forensics

» Fossil Fuels

» Inorganic Chemistry

» Nanotechnology

» Organic Chemistry

» Physics

» Quantum Physics

» Solar Energy

» Optics

» Materials Science

» Lasers

» Solar Cells

» Graphene


Porphyrin-nano switch. (Credit: Knud Seufert / TUM)
For a long time miniaturization has been the magic word in electronics. Dr. Willi Auwaerter and Professor Johannes Barth, together with their team of physicists at the Technische Universitaet Muenchen (TUM), have now presented a novel molecular switch in the journal Nature Nanotechnology. Decisive for the functionality of the switch is the position of a single proton in a porphyrin ring with an inside diameter of less than half a nanometer. The physicists can set four distinct states on demand.

Porphyins are ring-shaped molecules that can flexibly change their structure, making them useful for a wide array of applications. Tetraphenylporphyrin is no exception: It likes to take on a saddle shape and is not limited in its functionality when it is anchored to a metal surface. The molecule holds has a pair of hydrogen atoms that can change their positions between two configurations each. At room temperature this process takes place continuously at an extremely rapid rate.

In their experiment, the scientists suppressed this spontaneous movement by cooling the sample. This allowed them to induce and observe the entire process in a single molecule using a scanning tunneling microscope. This kind of microscope is particularly well suited for the task since -- in contrast to other methods -- it can be used not only to determine the initial and final states, but also allows the physicists to control the hydrogen atoms directly. In a further step they removed one of the two protons from the inside of the porphyrin ring. The remaining proton could now take on any one of four positions. A tiny current that flows through the fine tip of the microscope stimulates the proton transfer, setting a specific configuration in the process.

Although the respective positions of the hydrogen atoms influence neither the basic structure of the molecule nor its bond to the metallic surface, the states are not identical. This small but significant difference, taken together with the fact that the process can be arbitrarily repeated, forms the basis of a switch whose state can be changed up to 500 times per second. A single tunneled electron initiates the proton transfer.

The molecular switch has a surface area of only one square nanometer, making it the smallest switch implemented to date. The physicists are thrilled by their demonstration and are also very happy about new insights into the mechanism behind the proton transfer resulting from their study. Knud Seufert played a key role with his experiments: "To operate a four-state switch by moving a single proton within a molecule is really fascinating and represents a true step forward in nano-scale technologies."

This research was funded by the European Research Council (ERC Advanced Grant MolArt, No. 247299), the Excellence Cluster Munich-Centre for Advanced Photonics (MAP) and the Institute for Advanced Study of the TU Muenchen.

Recommend this page on Facebook, Twitter and more...

Story Source

This article uses materials provided by Technische Universitaet Muenchen. For further information, please contact the source cited above.

Top Science News

One black hole or two? Dust clouds can explain puzzling features of active galactic nuclei
Researchers at the University of California, Santa Cruz (UCSC), believe clouds of dust, rather than twin black holes, can explain the features found in active galactic nuclei (AGNs).... full story »

Measuring each point of a beam of light
If you want to get the greatest benefit from a beam of light-whether to detect a distant planet or to remedy an aberration in the human eye-you need to be able to measure it.... full story »

Success of blood test for autism affirmed
One year after researchers published their work on a physiological test for autism, a follow-up study confirms its exceptional success in assessing whether a child is on the autism spectrum.... full story »

Possible Subsurface Lake near Martian South Pole
A new paper published in Science this week suggests that liquid water may be sitting under a layer of ice at Mars' south pole.... full story »

Wireless Pressure-Sensing Eye Implant Could Help Prevent Blindness
Researchers at Caltech have developed an implantable pressure sensor that can reside in the human eye while wirelessly sending data about the eye's health to the medical professionals.... full story »


Search Science News Digest:

Enter a keyword or phrase to search ScienceNewsDigest's archives

Free Subscriptions

View hourly updated newsfeeds in your RSS reader:

RSS Newsfeeds
Social Bookmarking

Recommend this page on Facebook, Twitter and more...