Shocking case of indigestion in supermassive black hole

Share:

Source: Royal Astronomical Society (RAS)

Post Date: 2017-07-19

Topics: Astronomy & Space, Top Science News, Black Holes,

Summary: A multi-wavelength study of a pair of colliding galaxies has revealed the cause of a supermassive black hole's case of 'indigestion'. Results will be presented by Dr Hayden Rampadarath at the National Astronomy Meeting at the University of Hull.

 

Related Topics

» Astronomy

» Astrophysics

» Big Bang

» Black Holes

» Dark Matter

» Planets

» Mars

» Moon

» NASA

» Pluto

» Saturn

» Solar System

» Stars

» Sun

» Earth

» Jupiter

» Gravity


Left: Image of the Whirlpool galaxy and NGC 5195. Credit: Jon Christensen. Right: False colour image of NGC 5195 created by combining the VLA 20 cm radio image (red), the Chandra X-ray image (green), and the Hubble Space telescope H-alpha image (blue). The image shows the X-ray and H-alpha arcs, as well as the radio outflows from the supermassive black hole at the centre of NGC 5195. Right inset: e-MERLIN maps of the nuclear region of NGC 5195 at 1.4 GHz (left) and 5 GHz (right). The images display a partially resolved source with possible parsec-scale outflows. Credit: Left: NRAO / AUI / NSF / NASA / CXC / NASA / ESA / STScI / U. Manchester / Rampadarath et al. Right insert: e-MERLIN / U. Manchester / Rampadarath et al.
A multi-wavelength study of a pair of colliding galaxies has revealed the cause of a supermassive black hole's case of 'indigestion'. Results will be presented by Dr Hayden Rampadarath at the National Astronomy Meeting at the University of Hull.

Once every couple of hundred million years, the small galaxy NGC 5195 falls into the outer arms of its larger companion, NGC 5194, also known as the Whirlpool galaxy. Both galaxies are locked in a gravitational dance that will result -- billions of years in the future -- in the formation of a single galaxy.

As NGC 5195 plunges into the Whirlpool, matter streams onto the supermassive black hole at NGC 5195's centre and forms an accretion disc. The disc grows to a point where the supermassive black hole can no longer accrete or 'digest' efficiently and matter is blasted out into the surrounding interstellar medium. Last year, NASA's Chandra X-Ray observatory spotted arcs of X-ray emission that appeared to result from this 'force-feeding'.

Now, new high-resolution images of the core of NGC 5195, taken with the e-MERLIN radio array, and archive images of the surrounding area from the Very Large Array (VLA), Chandra and the Hubble Space Telescope, reveal in detail how these blasts occur and spread. The study was led by astronomers at the University of Manchester's Jodrell Bank Centre for Astrophysics.

The supermassive black hole at the centre of NGC 5195 has a mass equivalent to 19 million Suns. When the accretion process breaks down, immense forces and pressures create a shock wave that pushes matter out into the interstellar medium. Electrons, accelerated close to the speed of light, interact with the magnetic field of the interstellar medium and emit energy at radio wavelengths. The shock wave then inflates and heats up the interstellar medium, which emits in the X-ray, and strips the electrons from surrounding neutral hydrogen atoms to make ionised hydrogen gas. This inflated bubble creates the arcs detected by Chandra and Hubble.

Rampadarath explains: "Comparing the VLA images at radio wavelengths to Chandra's X-ray observations and the hydrogen-emission detected by Hubble, shows that features are not only connected, but that the radio outflows are in fact the progenitors of the structures seen by Chandra and Hubble. This is an event of galactic proportions that we can see right across the electromagnetic spectrum."

He adds: "The age of the arcs in NGC 5195 is 1-2 million years. To put that into context, the first traces of matter were being forced out of the black hole in this system at about the time that our ancestors were learning to make fire. That we are able to observe this event now through such a range of astronomical facilities is quite remarkable."

Recommend this page on Facebook, Twitter and more...

Story Source

This article uses materials provided by Royal Astronomical Society (RAS). For further information, please contact the source cited above.


Related Stories

Record massive black holes discovered lurking in monster galaxies

Early Black Holes Grew Big Eating Cold, Fast Food

Disaster Looms for Gas Cloud Falling Into Milky Way's Central Black Hole

Detecting the 'Heartbeat' of Smallest Black Hole Candidate

Astronomers See Distant Eruption as Black Hole Destroys Star

One black hole or two? Dust clouds can explain puzzling features of active galactic nuclei



Top Science News

One black hole or two? Dust clouds can explain puzzling features of active galactic nuclei
Researchers at the University of California, Santa Cruz (UCSC), believe clouds of dust, rather than twin black holes, can explain the features found in active galactic nuclei (AGNs).... full story »

Measuring each point of a beam of light
If you want to get the greatest benefit from a beam of light-whether to detect a distant planet or to remedy an aberration in the human eye-you need to be able to measure it.... full story »

Success of blood test for autism affirmed
One year after researchers published their work on a physiological test for autism, a follow-up study confirms its exceptional success in assessing whether a child is on the autism spectrum.... full story »

Possible Subsurface Lake near Martian South Pole
A new paper published in Science this week suggests that liquid water may be sitting under a layer of ice at Mars' south pole.... full story »

Wireless Pressure-Sensing Eye Implant Could Help Prevent Blindness
Researchers at Caltech have developed an implantable pressure sensor that can reside in the human eye while wirelessly sending data about the eye's health to the medical professionals.... full story »


Search Science News Digest:

Enter a keyword or phrase to search ScienceNewsDigest's archives

Free Subscriptions

View hourly updated newsfeeds in your RSS reader:

RSS Newsfeeds
Social Bookmarking

Recommend this page on Facebook, Twitter and more...