What Makes Anesthetics Work

Share:

Source: Seattle Children's

Post Date: 2011-12-29

Topics: Medicine,

Summary: Physicians use inhalation anesthetics in a way that is incredibly safe for patients, but very little is known about the intricacies of how these drugs actually work in children and adults. Now, researchers have uncovered what cells respond to anesthesia in an organism known as the C. elegans, according to a new study from the Seattle Children's Research Institute. C. elegans is a transparent roundworm used often in research. The study, "Optical reversal of halothane-induced immobility in C. elegans," is published in the December 20, 2011 issue of Current Biology.

 

Related Topics

» Allergy

» Alternative Medicine

» Birth Control

» Cancer

» Diabetes

» Diet and Weight Loss

» Diseases

» Health and Fitness

» Gene Therapy

» Heart Disease

» HIV and AIDS

» Men's Health

» Nutrition

» Obesity

» Pharmacology

» Pregnancy and Child Birth

» Sexual Health

» Skin Care

» Stem Cells

» Women's Health

» Oxidative Stress

» Anemia

» Medical Technology

» Multiple Sclerosis

» Epigenetics

» Viruses

» Pathogens

» Bone Marrow

» Antibodies

» Blindness

» Neurons

» Smells

» Dietary Supplements

Physicians use inhalation anesthetics in a way that is incredibly safe for patients, but very little is known about the intricacies of how these drugs actually work in children and adults. Now, researchers have uncovered what cells respond to anesthesia in an organism known as the C. elegans, according to a new study from the Seattle Children's Research Institute. C. elegans is a transparent roundworm used often in research. The study, "Optical reversal of halothane-induced immobility in C. elegans," is published in the December 20, 2011 issue of Current Biology.

"Our findings tell us what cells and channels are important in making the anesthetic work," said lead author Phil Morgan, MD, researcher at Seattle Children's Research Institute and University of Washington professor of anesthesiology and pain medicine. "The scientific community has attempted to uncover the secrets of how anesthetics work since the 1860s, and we now have at least part of the answer." Margaret Sedensky, MD, Seattle Children's Research Institute and a UW professor of anesthesiology and pain medicine, and Vinod Singaram, graduate student, Case Western Reserve University, are co-lead authors of the study.

The team studied the roundworm after inserting a pigment or protein typically found in the retina of a human eye -- called a retinal-dependent rhodopsin channel -- into its cells. The proteins in cell membranes act as channels to help movement. Researchers then used a blue light, activating channels in the roundworm that allowed the immediate reversal of anesthetics, and resulting in the roundworm waking up and seemingly swimming off the slide.

A video of a roundworm reacting to the blue light, waking up from anesthesia can be found here: http://www.youtube.com/watch?v=FhtFvKlnwxU

The team's findings won't immediately translate into a discovery that would be available for humans, cautioned Dr. Morgan, who has been working in this field for some 25 years. "But it tells us what function we have to treat to try to do so," he said.

"We believe that there is a class of potassium channels in humans that are crucial in this process of how anesthetics work and that they are perhaps the ones that are sensitive to potential anesthesia reversal. There are drugs for blocking these channels and with these same drugs, maybe we can eventually reverse anesthesia." Potassium channels are found in all living organisms and in most cell types, and they control a wide variety of cell functions.

Anesthesia medications are used in both children and adults, but many are used more often in kids. Dr. Morgan and his colleagues plan to replicate the study in other animal models, starting with a mouse.

Other co-authors for the study include: Benjamin Somerlot, graduate student, Case Western Reserve University; Dr. Scott Falk, University of Pennsylvania Perelman School of Medicine and Dr. Marni Falk, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine.

Recommend this page on Facebook, Twitter and more...

Story Source

This article uses materials provided by Seattle Children's. For further information, please contact the source cited above.

Top Science News

One black hole or two? Dust clouds can explain puzzling features of active galactic nuclei
Researchers at the University of California, Santa Cruz (UCSC), believe clouds of dust, rather than twin black holes, can explain the features found in active galactic nuclei (AGNs).... full story »

Measuring each point of a beam of light
If you want to get the greatest benefit from a beam of light-whether to detect a distant planet or to remedy an aberration in the human eye-you need to be able to measure it.... full story »

Success of blood test for autism affirmed
One year after researchers published their work on a physiological test for autism, a follow-up study confirms its exceptional success in assessing whether a child is on the autism spectrum.... full story »

Possible Subsurface Lake near Martian South Pole
A new paper published in Science this week suggests that liquid water may be sitting under a layer of ice at Mars' south pole.... full story »

Wireless Pressure-Sensing Eye Implant Could Help Prevent Blindness
Researchers at Caltech have developed an implantable pressure sensor that can reside in the human eye while wirelessly sending data about the eye's health to the medical professionals.... full story »


Search Science News Digest:

Enter a keyword or phrase to search ScienceNewsDigest's archives

Free Subscriptions

View hourly updated newsfeeds in your RSS reader:

RSS Newsfeeds
Social Bookmarking

Recommend this page on Facebook, Twitter and more...